

HYPERTURN 45

High-performance universal turning center for complete machining

HYPERTURN 45

The new Hyperturn 45 is characterized by its dynamics and great flexibility. With two highperformance spindles, two tool turrets and a Y-axis, it is designed to handle challenging production requirements with ease. Its compact dimensions and high static and dynamic rigidity provide the best possible conditions for manufacturing medium to large quantities of precision workpieces. It is particularly suited to use in general machinery and equipment engineering and also in the high-precision areas of medical technology and the jewelry industry.

1 UPPER TOOL TURRET

- 12-station tool turret
- VDI25 quick-change system
- 12 driven tool stations
- Servo-controlled
- Rigid tapping
- Polygonal turning, etc.

2 MAIN SPINDLE

Integrated, water-cooled spindle motor (ISM)

- High drive power: 15 kW
- High torque: 100 Nm
- Wide speed range: 0-7000 rpm
- Extremely dynamic
- Bar capacity ø 45 (51) mm

3 COMPACT MACHINE DESIGN

Minimal floor space

4 LOWER TOOL TURRET

- 12-station tool turret
- VDI25 quick-change system
- 12 driven tool stations
- Servo-controlled
- Rigid tapping
- Polygonal turning, etc.

Hip joint cup (Titanium alloy)

Dental contra-angle handpiece (Brass)

5 Y-AXIS

- Travel +40 / -30 mm
- 90° implemented in the machine construction
- Large distance between guides
- Stable and compact construction

6 CONTROL UNIT

- Ergonomically designed
- Siemens Sinumerik 840 D sl or Fanuc 31i-B
- or Fanuc 311-B
- LCD color monitor 15"

CHIP CONVEYOR

- Slant-bed conveyor belt
- Ejection height 1200 mm
- Integrated coolant tank 200 I
- Turret pumps: 2 x 14 bar
- Flushing pumps: 2 x 3.7 bar

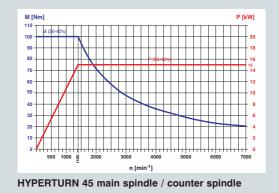
COUNTER SPINDLE

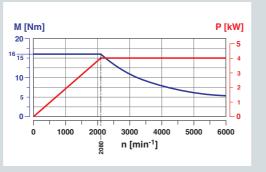
- Integrated, water-cooled spindle motor (ISM)
- High drive power 15 kW
- High torque: 100 Nm
- Wide speed range: 0 7000 rpm
- Highly dynamic
- Bar capacity ø 45 mm (optional)

Plug (Steel)

1 ROLLER GUIDES

- In all linear axes
- Preloaded and backlash-free
- High rapid motion speeds
- No wear
- Minimal lubrication required


2 MAIN SPINDLE


- Wide speed range
- C-axis for milling
- Spindle clamp
- A2-5 spindle nose
- Hollow clamping system ø 45 (51) mm
- Programmable clamping stroke monitor

3 MACHINE BASE

- Extremely rigid, welded-steel
- machine construction
- Compact design
- Very high thermostability
- Filled with vibration-absorbing material

Performance and torque

Tool turret - driven tools

4 TOOL TURRET

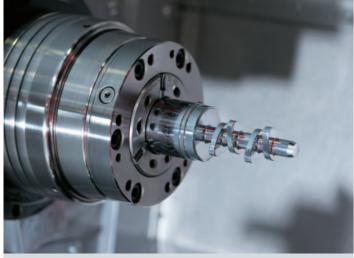
- 2 x 12-position VDI25 turrets
- No alignment of the tool holder
- Can be used flexibly on both spindles
- Swivel speed adjustable with override

5 COUNTER SPINDLE

- Wide speed range
- C axis for milling
- Spindle clamp

00.

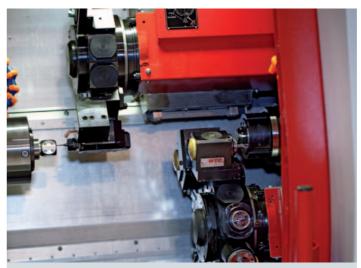
0


0

0

- A2-5 spindle nose
- Full clamping system with parts ejector ø 45 mm
- Programmable clamping stroke monitor

6 MACHINE STAND


- Solid welded-steel design
- Thermically separate from
- the machine base
- Filled with vibration-absorbing material
- 100% sealed against coolant leaks

Main spindle. The 15 kW motor spindle with its integrated water cooling system provides high dynamics but low thermal displacement. A high-resolution shaft encoder provides the optimum conditions for accurate contour milling and drilling.

Counter spindle. A 15 kW, water-cooled spindle motor ensures dynamic performance and high levels of precision. The standard machine is equipped with a coolant-fed parts ejector. This places the finished workpieces in the parts catcher and at the same time clears the clamping surface from chips. Additionally, a flexible coolant pipe is mounted above the counter spindle for cleaning.

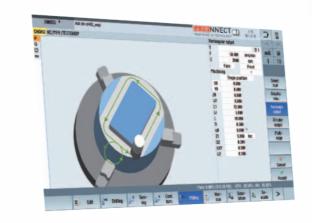
Tool turrets. Rapid 12-fold servo turrets with very short cycle times for standardised VDI25 tools. All stations may accommodate driven tool holders for drilling, milling or thread-cutting operations. The operator may influence the swing speed at any time.

Parts catcher. The HYPERTURN 45's pneumatic parts catcher is controlled using M functions. When needed, it traverses to the front of the work area and travels to the spindle center. The finished part is removed from the clamping device and transferred to the catcher tray. The parts catcher then moves back to its initial position and the part is tipped into a catching box or onto a conveyor belt.

HYPERTURN 45 Technical Highlights

Y-axis. The Y axis is integrated into the basic machine structure and stands at 90° to the X axis. Extremely short projections form the basis for solid turning and drilling operations and also for milling operations without interference contours.

Work area. The generous work area provides space for several tools on both turrets and ensures a continuous chip flow even when few machine technicians are at work. Additional coolant pumps and a sophisticated pipe system clears the chips into the chip conveyor.


Finished parts conveyor. The parts catcher deposits the finished parts on an accumulating conveyor with a usable storage area of 340 x 750 mm.

Highlights

- Highly dynamic drives in all axes
- Two high-performance work spindles
- Two highly flexible, 12-station tool turrets
- Stable Y-axis with 70 mm travel
- State-of-the-art control and drive technology
- User-friendly dialog control with 3D graphics
- Compact dimensions
- Made in the Heart of Europe

Your "Control Center" for the entire production flow

DASHBOARD – For a Quick Overview of the Machine Status

Clear and compact processing of all relevant machine and NC data depending on the configuration of the machine (number of tool systems, spindles, ...) and the active operating mode (JOG, MDA, AUTO). Know at a glance whether everything is OK or whether the machine operator will be required to interact.

EMCONNECT

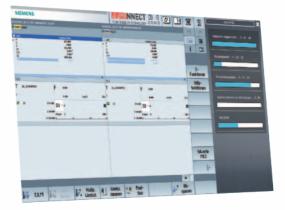
YOUR GUIDE IN TECHNOLOGY

emcoNNECT's hardware basis is a 22" industrial touch control panel combined with an industrial PC (IPC).

Highlights

- Direct interaction between EMCO Apps and the control
- Intuitive user interface optimized for touch control
- Range of available applications is continuously being expanded
- Customised and project-specific applications
- Optimized for the EMCO machine range
- emcoNNECT allows for easy and quick configuration and updating

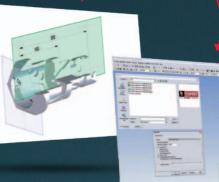
MACHINE DATA – All Data related to Productivity at a Glance


Operating data collection to inform the user about the current production status and OEE (Overall Equipment Effectiveness) values full screen or sidebar.

SINUMERIK - the Control and the Machine's Centerpiece

Thanks to the App Launcher operators may switch between the emcoNNECT Apps and the control at any time. All it takes to do so is a click on the emcoNNECT logo. To improve the work processes on the machine the control can, as shown in the picture, be operated in full screen mode or in interaction with practical apps (sidebar).

DOCUMENTS – A Digital and Expandable Document Collection Customised to Suit Your Individual Needs

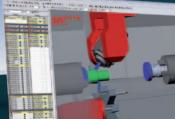

To display PDF documents such as machine documentations, programming instructions, process descriptions ... Including favourites management - full screen or sidebar

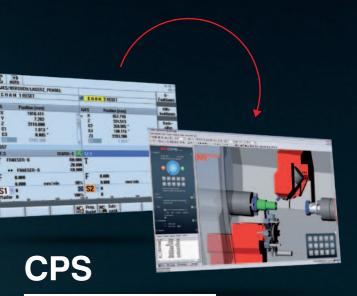
Virtual workflow. Real benefits.

ESPRIT.

Right Choi

The Esprit CAM system offers high flexibility and process security, a comprehensive selection of machining cycles, maximum tool control, and cross-machine technology for your entire production facility. EMCO CPS Pilot provides for a 1:1 mapping of the real machine for defining and testing processes, optimizing machining sequences, and training new operators.


CAD


Direct CAD data import

- AutoCAD (DWG)
- Parasolid®
- Solid Edge®
- Solid Works®
- ACIS® (SAT)
- Optional interfaces: CATIA®, Pro/ENGINEER®, STEP, STL,...

CAM

- 2-22 axis turning
- 2-5 axis milling
- Multi-tasking of turning and milling
 3D machine space simulation
- Gertified post-processors

 1:1 simulation with collision detection
 Direct connection to CAM ESPRIT
 Process optimization
 Reverse simulation of existing NC codes
 Reduction in scrap rates
 Training on the virtual machine
 Simulation of loading systems (e.g. EMCO gantry loader)

Production

Reduction in set-up costs
 Reduction in downtimes
 Reduction in repair costs
 Optimum machine utilization

Options

There are many accessories and options available to help further customize the HYPERTURN 45. A generous selection of tool holders allows a wide range of machining options, including those you would not immediately associate with a turning center, including deep hole drilling, intermeshing, engraving, groove slotting and many more.

:X10_210_C11			Messauftrags	nr 5			>>	
utrich 1	-							
		Antrieb 2			Antrieb 3			
Grenzalarm	BRUCH	1	Grenzalarm	BRUCH	1	Grenzalarm	aktuell	
2 9.9	8.4	6.7	6.7 8.6		8.8 32.3 4.8=188%			
88 128		158	88 128		158	88 129		
5 58	2	184	49	25	182	33%		
5 58 14 88		184 189	49 42		102 101	33 % 69 %	Messnr. löschen	
15 98 13 56 14 56		96 138 168 189 94 185	99 182 181	94 % 35 % 35 %	aile löschen			
5 57		189	98		103	36%		
wachung eingesch	alten 1	_	Alarma	caktion cin	geschalt	ten 8	Abbruch	
				-				
	88 128 55 58 55 58 44 88 55 98 33 56 54 56 55 57	00 120 5 58 2 5 58 2 5 58 2 5 58 2 5 58 2 5 58 2 3 56 3 5 57	00 120 1 120 15 58 2 184 15 59 184 16 189 189 15 99 90 30 16 56 194 189 15 90 90 30 16 56 94 195 16 57 189 30 Jachung cingeschalten 1 1	00 120 0 720 00 120 5 58 2 164 49 5 58 164 49 5 58 164 49 5 58 164 49 5 59 90 138 3 55 160 169 4 56 94 165 5 57 169 58 Jachung cingeschalten 1 Riarmer	00 120 1 120 1 120 1 5 53 2 164 49 25 5 5 5 5 164 49 25 5 5 5 164 49 25 5 5 5 164 49 25 5 5 5 5 164 49 25 5 5 5 5 138 3 5 5 138 3 5 5 169 169 14 165 5 5 5 5 5 7 109 58 9 3 3 5 5 5 7 109 58 5 5 5 7 109 58 3 3 3 3 3 5 5 5 7 109 58 3 3 3 3 3 3 3 3 3 3 3 3 3 3	00 120 123 123 123 123 5 58 2 104 49 25 102 5 58 2 104 49 25 102 5 58 104 49 102 101 5 58 104 49 102 101 5 90 58 138 99 33 55 108 109 102 4 56 94 105 101 102 101 102 4 56 94 105 101 102 102 103	00 120 123 <th133< th=""> <th133< th=""> <th133< th=""></th133<></th133<></th133<>	

EMCO tool breakage monitoring system

The tool status is monitored by evaluating the load on the various axis drive motors. Excessive loads point to wear or broken tools. Too low a load indicates a tool is missing.

Band filter system with high-pressure coolant pumps A coolant pressure of 25/40/60/80 bar can be set as necessary. This enables coolant-fed drilling and milling tools to be used to their best advantage

Tool gauge

The tool gauge allows tools to be measured quickly and accurately on both turrets in the work area. It is mounted manually in the holder in the work area and, after use, is replaced in a storage space in the machine housing.

Unloading through the counter spindle

Long, thin workpieces with diameters of up to 45 mm can be removed from the machine using the counter spindle. Parts are mostly stored on a sloping surface or, if necessary, also on a controlled conveyor to prevent any kind of damage occuring.

Maximum output minimum space required.

The EMCO swing loader is a universal loading system for all types of pre-formed blanks. It can be customized individually to the customer's requirements using numerous gripper and handling systems. How we do it: we standardize the components but create a customized solution. The result: a custom-tailored machine for the same price as a standard unit.

High-capacity timed conveyor system for correct directional loading of pre-formed blanks

Multiple infeed chutes for loading rotationally-symmetrical blanks; the length of the blanks determines the number of infeed chutes.

Multiple infeed chutes for loading rotationally symmetrical blanks. A sensor monitors the availability of blank parts for each infeed chute

shafts.

Blank part feeding systems

Feed systems specific to particular blanks allow pre-formed workpieces to be loaded into the work spindle in the right direction, allowing manufacturing with minimal personnel requirements.

Customization

A wide range of gripper and handling systems is available.

2-finger gripper with 180° rotary module for loading vertically fed blanks

2-finger toggle lever gripper for loading shaft parts

Timed conveyor system with V-supports for preformed shaft parts of various shapes.

Shaft gripper for automatically loading pre-formed

Fully automatic shaft loading. Feed-in via a conveyor belt, removal via the finished parts pick-up device

Parallel grippers with 180° rotary module for loading shaft parts (1st and 2nd clamping cycle)

EMCO TOP LOAD. The premium class.

Quality by the meter. The EMCO TOP LOAD series was designed to automatically load 3-meter long bar stock into EMCO machines. Loaders are available for diameters of 4 - 25 mm, 8 - 42 mm, and 10 - 65 mm. Bar stock measuring up to 42 mm in diameter can be loaded using the EMCO TOP LOAD 8-42/3200. The oil coolant-fed loading channel, lined with plastic shells, reduces vibrations to a minimum, even at high speeds. Bar stock is fed in via a servo motor which controls both the speed and feed force. A patented guidance system with several guidance rests guarantees optimum feed quality. Time-consuming conversions and channel changes are no longer necessary. The bar loader can be switched from one diameter to another in just a minute or two.

EMCO TOP LOAD 8-42/3200 in SINGLE-LEVEL version

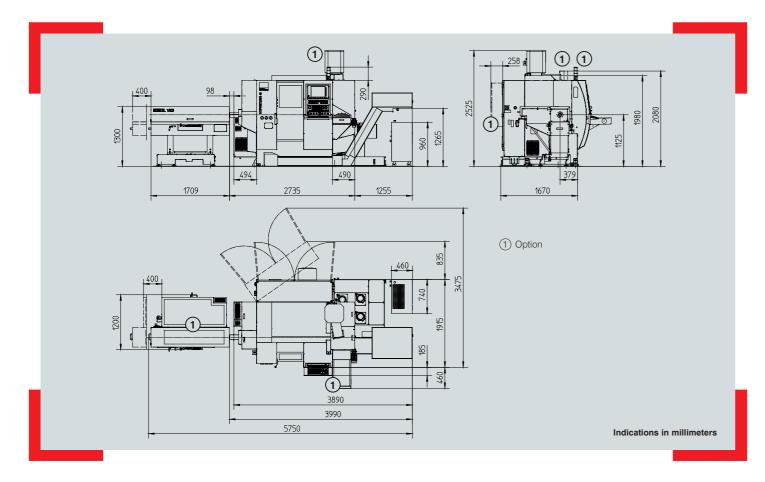
In SINGLE LEVEL mode. Bar stock is laid on a slanted feed track (280 mm) and falls into the guide channel one by one. Optionally, the MULTI-LEVEL version is also available. In this case, bar material can be stored on several levels (3x 300 mm), thus maximizing manless operation.

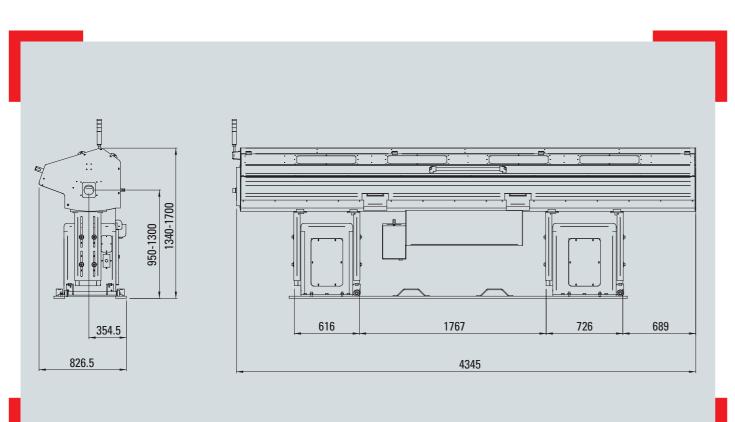
The EMCO short bar loaders. Universal, high-performance.

Short and to the point. The EMCO SL1200 is the perfect solution for automatic feeding and loading of cut-to-length bars. The key advantages are a small footprint and rapid loading times resulting from shorter strokes.

The technology. The SL1200 can be used immediately as a "plug-and-play" solution. Their extremely small footprint enables processes to be automated even if space is tight. Apart from complying with the latest safety requirements, it is easy to operate and moveable for service purposes. Besides, it can comfortably be incorporated into the production process using the machine control's programme input masks.

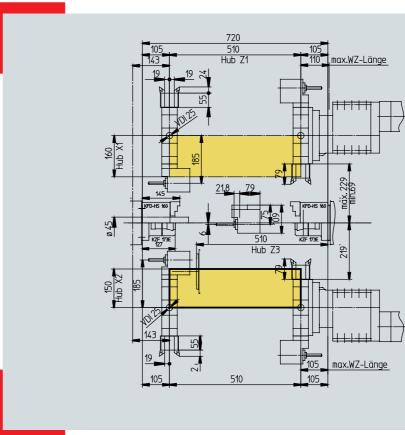
Technical data	SL1200
Bar diameter	Ø 8–95 mm
Max. bar length	1200 mm
Min. bar length	150 mm
Material storage length	approx. 560 mm
Feed rate	0 – 60 m/min
Bar change time	approx. 15 sec.
Dimensions (L x W)	1700 x 1250 mm
Weight	approx. 500 kg


EMCO SL1200. Space-saving and cost-effective bar loading magazine. Operation and programming could not be easier. May also be used for loading single items through the lathe's main spindle.

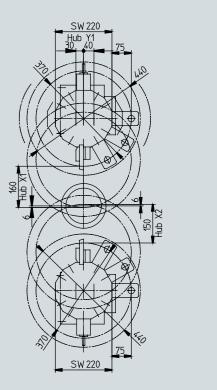


Material storage. The material storage surface with a length of 560 mm is arranged at the rear of the bar loader in a manner with no influence whatsoever on the space available. Depending on the diameter it is possible to store a different number of short bars.

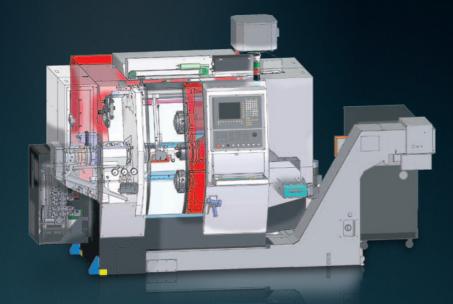
Machine layout HYPERTURN 45 with EMCO SL1200



Layout EMCO TOP LOAD 8-42/3200


Indications in millime

HYPERTURN 45 SMY work area layout



Machine layout HT45 with EMCO swing loader

Quality Components

Clamping cylinder / chuck Hydraulically activated clamping cylinders and chucks guarantee the precise, safe clamping of work pieces. Programmable sensors are used for stroke monitoring. There is no need for time-consuming adjustments of contactless limit switches.

Tool holder

Innovative, fully developed tool holder systems form the basis for cost-effective machining. High changeover accuracy and stability result in short setup and cycle times.

Headstocks

The design and manufacture of headstocks are two of EMCO's core competencies. During engineering, the focus is on precision, robustness, high rigidity, precise rotational characteristics, and a long service life.

Coolant pumps Low-maintenance immersion pumps for pressures of up to 25 bar and flow rates of up to 1500 l/min provide optimum conditions for machining and enable reliable chip transportation.

Hydraulic systems

Compact dimensions, quiet operation, and high energy efficiency - just some of the advantages of the hydraulic assemblies used by EMCO. Monitored pressure switches prevent the need for time-consuming manual pressure adjustments

Machine bases and slides

When matching components, we place great value on high stability. good damping characteristics, and a thermoneutral design. We achieve high stability through a shorter force flow, thermal stability through symmetry, and dampening through the materials and interfaces selected

Tool turret

Rapid-indexing turrets with adjustable swivel speeds and milling drives represent the current state of the art. The backlash-free milling drive is not only ideal for milling and drilling, but also for rigid tapping, hobbing, and polygonal turning

Ball screws and roller guides

Highly precise and generously dimensioned guide rails and ball screws with optimal pretensioning form the basis for the machining of precision parts.

Chip conveyor Slat band conveyors allow for flexible

implementation and the safe removal of chips. A monitored overload clutch prevents damage from improper use.

Minimum use of resources for maximum profit.

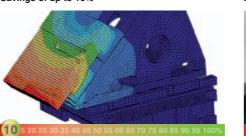
At EMCO, we take a consistent, responsible approach to the use of resources in machine tools in order to safeguard long-term investments. From the development of our machines through to their construction and manufacture, we place a strong focus on the sensible and sparing use of raw materials and energy. This enables us to achieve parallel savings in two areas:

1. Reduction in the basic power consumption of machine tools, e.g. assemblies are switched on and off as required and the installed connected loads are kept to a minimum.

2. Reduction in variable consumption: This can be seen in the lighter axes, energy recovery system, increased rate of good parts, and the shorter process chain enabled by complete machining.

Through these measures, which are constantly being refined and further optimized, EMCO truly demonstrates that its slogan of "Designed for your Profit" is not just an empty promise: EMCO products help save the environment and provide intelligent customer savings without compromising on quality and flexibility.

Regenerative drive system Kinetic energy is converted into electrical energy and fed back into the grid Savings of up to 10%


[Compact hydraulics unit with pressure accumulator]

Thanks to its accumulator charging system, the pump only runs when required. If the pressure accumulator is full, the pump switches over to closed loop circulation. Savings of up to 90%

Structurally optimized mechanics

FEM analysis is used to optimize the relevant components in terms of their rigidity while simultaneously reducing their weight Savings of up to 10%

Intelligent standby concepts

Reduced consumption by automatically switching off ancillary units and machine space/screen illumination after a defined period of inactivity on the control panel. Savings of up to 50%

[Highly efficient motors]

preparation area guarantee highly cost-effective operation Savings of up to 10%

Virtual machine

Savings of up to 85%

E M COLOGY

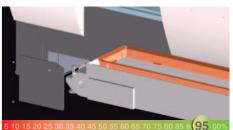
Designed for Efficiency

The use of energy-efficient motors (IE2) in the coolant

Significant reduction in the setup and running-in times on the machine through the use of highly developed simulation and programming software

Roller guides

Extremely low friction losses thanks to rolling friction. Highly dynamic performance with minimal lubricant consumption.


Savings of up to 50%

[Synchronized chip conveyor]

Programmable interval times enable optimal use of the chip conveyor independently of of the machining process

Savings of up to 95%

Intelligent energy management

Intuitive data entry screens for activating the individual energy-saving functions Savings of up to 70%

IERGIEMANAGEM						it fuer Mass		2415
Energiemanagem	ent Periphe	rie						- 1
Bidschirm	5 (min)		Ξ	5	Spänetörderer	38 [sec]	# [sec]	• E
/ Licht	18 (min)				Pausenzeit	288 [sec]	8 [sec]	
Pnoumatik	18 (min)	88.68.88	=	-	Hillsantriebe	18 (min)		
Sy Sichlienster	5 (min)		=	8	Spindelkühlung	18 [min]		• 🖿
Ausschallmanage	ment Masc	hine						
Haschine aus	18 (min)	88:68:88	2		Alarmmeldung	1 [min]	88.88.88	

HYPERTURN 45 Technical Data

Working area

Swing over bed	Ø 430 mm
Swing over cross slide	Ø 300 mm
Distance from main spindle to counter spindle	720 mm
Max. turning diameter	Ø 300 mm
Max. part length	480 mm
Max. bar capacity	Ø 45 (51) mm

Travel

Slide travel in X / X2	160 / 150 mm
Slide travel in Z / Z2 / Z3	510 / 510 / 510 mm
Travel in Y	+40 / -30 mm

Main spindle

Speed range	0 – 7000 rpm
Max. torque on the spindle	100 Nm
Spindle nose DIN 55026	A2-5
Spindle bearing (inner diameter at front)	Ø 85 mm
Spindle bore	Ø 53 mm

Counter spindle

Speed range	0 – 7000 rpm
Max. torque on the spindle	100 Nm
Spindle nose DIN 55026	A2-5
Spindle bearing (inner diameter at front)	Ø 85 mm
Spindle bore	Ø 53 mm

C axis

Resolution	0,001°
Rapid motion speed	1000 rpm
Spindle indexing (disc brake)	0,01°

Drive power

15 kW
15 kW

Tool turrets 1+2

VDI 25
16 x 16 mm
Ø 25 mm
0,2 sec
0 – 6000 U/min
16 Nm
4 kW
2 x 12
30 / 15 / 45 m/min
4000 N
5000 N
6000 N
3 / 3 / 3 µm
300 I
2 x 14 bar
2 x 3,7 bar
30 kVA
6 bar
1126 mm
1985 mm
2650 x 1950 mm
4200 kg